

Required data out of Airplane and Ops Manuals for analyzing engine failure related data, procedures and accidents. Section numbers and titles might vary with airplane type/model and manufacturer.

Please review the paper Airplane Control and Accident Investigation after Engine Failure (<u>click here</u>) to learn why these data are required.

Airplane type	:	Engine power/ thrust in Type Certificate:	
Engine type	:	Engine type in Type Certificate	:
Propeller type & blades :		Propeller type in Type Certificate	:

Pilot Operating Handbook or Airplane Flight Manual:

Section 1 - General:	Definitions of V_{MC} , V_{MCA} , V_{MCG} , V_{MCL} , V_{YSE} , V_{XSE} , V_S , V_1 , V_R , V_2 (if presented); Required placards related to V_{MC} / V_{MCA} that should be visible to the pilot in the cockpit (if these are listed in the Manuals); Does the airplane have a rudder boosting system and if so, by which engine(s) is it driven? Engine type and propeller type (if applicable) published in AFM.
Section 2 - Limitations:	V _{MC} , V _{MCA} , V _{MCG} , V _{MCL} , V _{YSE} data (knots or MPH). Any bank angle requirement included? Weight limitation graph (Weight versus Center of Gravity); Maximum approved fuel asymmetry (wing tanks).
Section 3 - Emergencies:	Airspeeds for safe operations: V _{YSE} , V _{XSE} , V _{SSE} , if any. These might be in a different section (performance); Engine inop. or single engine procedures: On ground and in flight (low speed, high speed); Fuel management during One Engine Inoperative operations (cross feed, transfer, max. fuel imbalance).

Section 4 - Normal procedures:

Is the propeller feathering system automatic, and is it to be armed by the pilot during pre-flight and approach checks? Engine inoperative go-around procedure, if any; V_{MCA} demonstration procedure, if any; Practice engine inoperative flight procedures, if any.

Section 5 - Performance: Climb performance data (graph), both engines operative;
Climb performance data (graph), one engine inoperative; V_{YSE} and bank angle advisories?
V₁/V₂ graphs/ data;
Stall speed (V_s) graph (sometimes V_s versus bank angle graph).

Section 7 - Flight Techniques:

Use of V₂ explained? Is published V₂ the minimum V₂ (V_{2MIN}), or V_{2MIN} plus an increment). Any bank angle limitations published while airspeed is V₂ or V₂ + xx knots; Engine failure during takeoff; V for zero thrust/drag (for engine-out training); Approach with an inoperative engine.

Other data required:

Weighing report

Date: